New model for improving batteries that last longer and are much smaller

Stanford scientist’s new approach may accelerate design of high-power batteries April 6, 2017 Stanford News

In work published this week in Applied Physics Letters, the researchers describe a mathematical model for designing new materials for storing electricity. The model could be a huge benefit to chemists and materials scientists, who traditionally rely on trial and error to create new materials for batteries and capacitors. Advancing new materials for energy storage is an important step toward reducing carbon emissions in the transportation and electricity sectors.

The potential here is that you could build batteries that last much longer and make them much smaller,” said study co-author Daniel Tartakovsky, a professor in the School of Earth, Energy & Environmental Sciences. …

….One of the primary obstacles to transitioning from fossil fuels to renewables is the ability to store energy for later use, such as during hours when the sun is not shining in the case of solar power. Demand for cheap, efficient storage has increased as more companies turn to renewable energy sources, which offer significant public health benefits.

Tartakovsky hopes the new materials developed through this model will improve supercapacitors, a type of next-generation energy storage that could replace rechargeable batteries in high-tech devices like cellphones and electric vehicles. Supercapacitors combine the best of what is currently available for energy storage – batteries, which hold a lot of energy but charge slowly, and capacitors, which charge quickly but hold little energy. The materials must be able to withstand both high power and high energy to avoid breaking, exploding or catching fire.

“Current batteries and other storage devices are a major bottleneck for transition to clean energy,” ….